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NATTONAL AFRONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-217

LOW-SPEED INVESTIGATION OF STATIC
LONGITUDINAL AND LATERAL STABILITY CHARACTERISTICS
OF AN ATRPLANE CONFIGURATION WITH A HIGHLY TAPERED
WING AND WITH SEVERAL BODY AND
TATL ARRANGEMENTSL

By Paul G. Fournier
SUMMARY

A low-speed investigation was made in the Langley 300 MPH T7- by
10-foot tunnel of the static longitudinal and lateral stability charac-
teristics of an airplane model with multiple bodies and of a conventional
(single-fuselage) model in combination with a wing of aspect ratio k4.
The wing had zero sweep at the 80-percent-chord line, a taper ratio
of zero, and an NACA 65A004 airfoil section. Several tail arrange-
ments were tested with the three-body configuration along with a
conventional-tail arrangement for both models. The results indicate
that the pitching-moment characteristics for the three-body model appear
to bear about the same relation to height of the horizontal tail as that
which has been well established by previous investigations of conven-
tional (single-fuselage) configurations. It appears that acceptable
longitudinal stability can be obtained for both complete model configu-
rations with the horizontal tail located in or near the wing-chord plane.

The data show that for the multiple-body (three-body) model all
tail-on configurations were directionally stable throughout the angle-
of -attack range and were greatly improved over the conventional model
configuration which was directionally unstable above an angle of attack
of 20°. The data also indicate that this improved directional sta-
bility for the complete three-body model results from the fact that
with the tail off the directional stability becomes positive at high
angles of attack.

lSupersedes recently declassified NACA Research Memorandum L57A08
by Paul G. Fournier, 1957.



INTRODUCTION

The conventional arrangement of current high-speed airplane configu-
rations, in which the total required volume is contained primasrily within
a single long slender body to which the stabilizing surfaces are also
attached, imposes certain objectionable flight characteristics as well
as some undesirable operational limitations. With such configurations
directional stability has been difficult to maintain at high angles of
attack (ref. 1), whereas a considerable amount of directional stability
is required to avoid serious divergence problems due to roll coupling
in an airplane with a concentration of mass along the body (ref. 2).
Incompatibility of engine and armement operation, stores release, and
speed-brake installation are also complications encountered with a
single slender fuselage.

The three-body arrangement investigated herein was conceived as a
possible means for alleviating the problems mentioned in the preceding
paragraph while maintaining an arrangement that would appear to entail
no serious compromise in high-speed performance capabilities. Consider-
ation of essentially the same general philosophy, but with emphasis on
the improvement of high-1lift longitudinal stability, provided the basis
for the investigation reported in reference 3. For the test model, the
total body volume was divided equally among three separate bodies - one
which extends forward of the wing in the plane of symmetry and two which
extend rearward from the wing at outboard locations. The wing had an
aspect ratio of 4, a taper ratio of zero, and zero sweep at the 0.80-chord
line. The tests covered several configurations of tails attached to the
outboard bodies. Static longitudinal and lateral stability characteris~
tics for the various arrangements of the model were determined at low
speeds, For comparison purposes, the wing of the investigation was also
tested in a conventional fuselage and tail arrangement.

COEFFICIENTS AND SYMBOLS

The axis system used and the direction of positive forces, moments,
and angles are presented in figure 1. All moments of the basic data
are referred to the quarter-chord point of the wing mean aerodynamic
chord, and except for 1lift and drag all data are presented about the
body axis.

b wing span, ft
Cp drag coefficient, QE%E
C. 1ift coefficient, Lift
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Rolling moment

rolling-moment coefficient,
gsSb

Pitching moment

pitching-moment coefficient, —
qsSc

Yawing moment

awing-moment coefficient
y g ) 35b

Lateral force

lateral-force coefficient, S
q

rolling moment due to sideslip, 991, per deg
B

aoC
L per deg

yawing moment due to sideslip,

lateral force due to sideslip, , ber deg

wing chord, ft
wing mean aerodynamic chord, ft

fuselage or body length, in.
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free-stream dynamic pressure, pg , 1b/sq ft

wing area, sq ft

free-stream velocity, ft/sec
angle of attack, deg

angle of sideslip, deg

mass density of air, slugs/cu ft
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TESTS AND CORRECTIONS

All tests were made at a dynamic pressure of 45.85 pounds per
square foot, which for average test condition corresponds to a Mach
number of about 0.18 and a Reynolds number of 1.85 x 106 based on the
wing mean aerodynamic chord of 1.479 feet.

The present investigation consists of tests made to determine the
low-speed static longitudinal and lateral stability characteristics of
a three-body model as compared with a conventional (single-fuselage)
model. The angle-of-attack range was from approximately -4° to between
26° and 36°, depending on the configuration. The parameters Cj_, CnB,

and CYB were determined from tests at sideslip angles of #5° through-

out the angle-of-attack range. The angle of attack, drag, and pitching

moment with the horizontal tail on have been corrected for jet-boundary

effects as well as for blockage effects on the dynamic pressure and drag
coefficient in accordance with standard procedures.

Vertical buoyancy on the support strut, tunnel-airflow misalinement,
and longitudinal pressure gradient have been accounted for in the com-
putation of the data. These data have not been corrected for the tares
caused by the model-support strut; however, tare tests of a complete
model similar to the conventional model of the present investigation
have indicated that tares corresponding to the lateral coefficients are
small, that the correction to drag coefficient is about 0.009 at zero
1ift, and that the correction to pitching-moment coefficient is small
and independent of angle of attack through most of the range. It is
felt that the tare corrections for the three-body model would be still
smaller, inasmuch as there is nc fuselage directly rearward of the model-
support strut.

MODEL AND APPARATUS

The wing of the present investigation had an aspect ratio of L,
a taper ratio of zero, an NACA 65A004 airfoil section parallel to
the plane of symmetry, and zero sweep at the 80-percent-chord line
(Ac/h = 28.800>. The wing was fabricated from 0.5-inch.aluminum-alloy

plate bonded with wood and machined to give the desired airfoil.

The three bodies as well as the single fuselage were constructed
of mahogany. The three-body model was constructed so that the total
volume of the three bodies is the same as that of the single fuselage.
For ease of construction all three bodies were made identical, the small
fairing at the rear of the center body was added later. The ordinates
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of the single fuselage and of one body of the three-body model are pre-
sented in tables I and II, respectively. Three-view drawings of the
three-body model and the conventional model are presented in figure 2.
A photograph of the complete three-body model with a T-tail arrangement
is shown in figure 3.

The horizontal- and vertical-tail surfaces used with the three-body
model were made of 0.250-inch aluminum alloy, with rounded leading edges
and tapered trailing edges. The horizontal-tail surface for the conven-
tional model was of the same plan form as the wing but was made of
0.375-inch aluminum alloy with rounded leading edge and tapered trailing
edge, whereas the vertical tail had an aspect ratio of 1.16 with an
NACA 63A009 airfoil section. Sketches of all the tail arrangements used
are presented in figure 4. Details of additional tail assemblies other
than the one shown in figure 2(a) for the three-body model are presented
in figures 2(c) and (d). All horizontal tails had zero incidence.

The three-body model was so constructed that the wing could be
tested alone or with any symmetrical combination of the three bodies.
The wing of this investigation was in a midwing position and was mounted
so that moments and forces were measured about the quarter-chord of the
wing mean aerodynamic chord.

The model was mounted on a single support strut which in turn was
attached to the mechanical-~balance system of the Langley 300 MPH 7- by
10-foot tunnel.

RESULTS AND DISCUSSION

Presentation of Results

The results of the present investigation are presented in figures 5
to 32. The longitudinal characteristics of the three-body model with
various tail arrangements are found in figures 5 to 1k. A summary of
the effect of the tail and body arrangements on the longitudinal charac-
teristics is presented in figure 15. The variations of lateral data
are shown in figures 16 to 32.

Longitudinal Stability Characteristics

The basic static longitudinal stability results presented in fig-
ures 5 to 14 represent a center-of-gravity location at the 0.25¢ loca-
tion. The static margin therefore varied somewhat with the different
configurations. In corder to provide a more realistic comparison of the
pitching-moment curves, the data in the summary plots (fig. 15) have



been recomputed with respect to a center-of-gravity location such that
a static margin of 0.10C is obtained for all configurations at zero 1lift.

In general, figures 15(a) and (b) show that the pitching-moment
characteristics of the three-body model are less favorable for the high-
tail positions than for the case of the tail in the wing-chord plane.
These results show very much the same trends with tail height as those
established for conventional (single-fuselage) configurations (ref. 4)
and result primarily from the downwash characteristics behind the wing.
Of the tails above the wing-chord plane, only the inverted V-tail (tail 6)
showed no reduction in stability at high lift. The configuration with
tail 6 provided the most nearly linear pitching-moment curves obtained
in the investigation (fig. 15); however, as is indicated in a subsequent
section, the directional characteristics were rather poor for this
configuration.

Figures 15(c) and (d) show comparisons of the longitudinal stability
of the three-body model with various tail arrangements and with the con-
ventional single-fuselage model for the complete and tail-off configu-
rations. The results indicate that there are several possible tail
arrangements with the three-body model that provide pitching-moment
characteristics comparable to those of the single-fuselage model with
a low tail. The three-body configurations with the cruciform tail
(tail 1) or the modified cruciform tail with the inboard portion of the
horizontal tail removed (tail 4) experienced rather rapid increases in
stability at o = 7° and some reduction in stability above a = 26°
(fig. 15(c)); however, these nonlinearities do not appear serious. The
wing-fuselage configurations shown in figure 15(d) indicate that both
the three-body model and the conventional single-fuselage model exhib-
ited reasonably linear pitching-moment characteristics throughout the
angle-of -attack range, and that the three-body model provided a some-
what higher value of maximum 1ift coefficient. In general, it may be
noted that for the tail incidence tested (0°), the three-body configu-
ration (figs. 15(c) and (d)) provided higher values of trim lift coef-
ficient than the conventional configuration.

Lateral Stability Characteristics

The effects on the static lateral stability derivatives of the
addition of different arrangements of bodies to the wing with an aspect
ratio of 4 are shown in figure 30. Although the wing alone has almost
neutral directional stability, the addition of the conventional fuse-
lage made the configuration directionally unstable throughout the angle-
of -attack range with a region of very high instability between an angle
of attack of 17° and of 25°. The wing plus the center body of the
three-body model were also directionally unstable; however, the large
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dip found in the CnB curve for the conventional wing-fuselage configu-

ration was absent. The presence of the region of high instability for
the conventional configuration and its absence for the configuration
with the single center body is an indication of the adverse effect of

the wing-induced sidewash on a fuselage afterbody as has been pointed

out in reference 5. It is of interest to note that when the two outer
bodies were added to the wing plus the center body the directional insta-
bility at low angles of attack was about the same as for the conven-
tional model; however, as the angle of attack increased, the instability
diminished for the three-body model. Above o = 15° the three-body
model was stable with tail off.

A positive dihedral effect (-CIB) was noted for the wing alone and

for the three-body configurations throughout the angle-of-attack range
(fig. 30). Both the conventional and the single-center-body configura-
tion indicated a negative dihedral effect above o = 16°, the latter
showing a large value at o = 25°.

The static lateral stability data (figs. 17 to 29) indicate that
the directional stability characteristics of all the complete configu-
rations of the three-body model were improved over those of the conven-
tional complete-model configuration; that is, all the three-body con-
figurations were directionally stable throughout the angle-of-attack
range, although for some the stability was marginal (tails 6 and 9).
Two of the best configurations, one with the cruciform tail (tail 1)
and one with the conventional vertical tail (tail 3), are compared with
the conventional model configuration (tail 10) in figure 31. The direc-
tional stability of the conventional model became negative above a = 200,
whereas the stability of both three-body configurations showed only small
reductions at high angles of attack.

The contribution of the vertical tail at any angle of attack,
expressed as a fraction of the contribution at a = OO, is compared
for several model arrangements in figure 32. It is of interest to note
that although the tail contributions for the three-body model appeared
to be better than that of the conventional model above an angle of
attack of 250, the contributions for the three-body model were invari-
ably smaller than for the conventional model at lower angles. It thus
may be concluded that the improved directional stability of the com-
plete three-body configurations, as mentioned in the preceding para-
graph, over that of the conventional model configuration is not due to
the vertical-tail contribution but is caused by the stability charac-
teristics of the wing-fuselage configuration.



CONCLUSIONS

Results of a low-speed investigation of the static longitudinal
and lateral stability characteristics of an airplane model with three
bodies and of a conventional (single-fuselage) model indicate the fol-
lowing conclusions:

1. The pitching-moment characteristics for the three-body model
appear to bear about the same relation to height of the horizontal tail
as that which has been well established by previous investigations of
conventional (single-fuselage) configurations. It appears that satis-
factory longitudinal stability can be obtained with several different
arrangements of horizontal tails located in or near the wing-chord plane
for the three-body model.

2. All the tail-on configurations of the three-body model were
directionally stable throughout the angle-of-attack range and were
greatly improved over the conventional model configuration which was
directionally unstable above an angle of attack of 20°. The improved
directional stability for the complete three-body model results from
the fact that with tail off, the directional stability becomes positive
at high angles of attack.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Field, Va., December 12, 1956.
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TABLE I.- SINGLE-FUSELAGE ORDINATES

Ordinates, percent length

Station Radius
0 0
3.28 .91
6.57 1.71
9.86 2.41

13.15 3.00
16.43 3.50
19.72 3.90
23.01 .21
26.29 .43
29.58 4.53
32.00 4.57
75.3k L.57
76.69 4.5k
79.98 4.38
83,26 4.18
86.55 3.95
89.84 3,72
93.13 3.49
96.41 3,06

100.00 3.02
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TABLE II.- THREE-BODY ORDINATES

—e————— 1 = 46.59 in.

1L-818

<— 0.2801 —>

\

_..._...d.max.__._
1
Ordinates, percent length
Station Radius
0 0

.60 il
.90 .56
1.50 .81
3.00 1.%6
6.00 2.28
9.00 3.05
12.00 3.72
18.00 4.90
2L .00 5.84
30.00 6.55
36,00 7.07
42,00 7.43
48.00 7.67
54.00 7.8%
60.00 7.87
66.00 7.80
72.00 7.60
78.00 7.26
84 .00 6.73
90.00 5.91
96.00 h.77
100.00 3,94
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Figure 1l.- Axes system and conventions used to define positive sense of
forces, moments, and angles.
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(c) Dimensions of tail assembly 5.

23.96 —

<—1//.98 /1198 —= ~6.0
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(d) Composite dimensions of tail assemblies 6 to 9.

Figure 2.- Concluded.
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Figure 5.- Longitudinal characteristics of three
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